
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2023) 5:322–333
https://doi.org/10.1007/s42514-023-00147-x

1 3

REGULAR PAPER

Adapting combined tiling to stencil optimizations on sunway
processor

Biao Sun1 · Mingzhen Li1 · Hailong Yang1 · Jun Xu2 · Zhongzhi Luan1 · Depei Qian1

Received: 5 March 2023 / Accepted: 18 April 2023 / Published online: 17 May 2023
© China Computer Federation (CCF) 2023

Abstract
Stencil is one of the indispensable computation patterns in scientific applications, which is a long-standing optimization target
in the field of high performance computing (HPC). The Sunway processor adopted in Sunway TaihuLight supercomputer
has demonstrated its performance potential with unique heterogeneous many-core architecture. Although a large number
of optimization methods have been proposed, the memory-bound nature of stencil computation and the limited bandwidth
of Sunway processor make it challenging to adapt stencil computation efficiently on Sunway processor. To better use the
computation capability of Sunway processor, we propose a combined tiling optimization of stencil computation tailored for
the architectural features. In addition, we implement double buffering, vectorization, and register communication to further
accelerate stencil computation on Sunway processor. We evaluate our method on six stencil benchmarks with different orders
and shapes (thus different memory access patterns and computation intensities). The experimental results show that our
implementation can achieve 1.97× speedup on average compared to the state-of-the-art stencil implementation on Sunway.

Keywords Stencil computation · Sunway processor · Performance optimization · Combined tiling

1 Introduction

Stencil is an important and indispensable building block
of modern scientific applications. It is widely used in the
fields of weather prediction (Powers et al. 2017), earth-
quake simulation (Fu et al. 2017), fluid dynamic (Dongarra
et al. 2008) and etc. Therefore, performance optimization

of stencil computation has been a long-standing research
topic in the field of HPC (High Performance Computing)
ever since. Although tremendous research efforts have been
devoted, stencil computation is challenging for performance
optimization due to its memory-bound nature.

There are already a large number of studies on the per-
formance optimization of stencil computation on CPUs and
GPUs (Bertolacci et al. 2015; Guo et al. 2009; Habich et al.
2009; Matsumura et al. 2020; Micikevicius 2009; Mosta-
fazadeh et al. 2018; Nguyen et al. 2010; Rawat et al. 2018,
2019; Rivera and Tseng 2000; Wellein et al. 2009). Although
the computation capability of CPUs and GPUs has been
increasing rapidly, their limited memory bandwidth makes it
difficult for stencil computation to fully utilize the computa-
tion resources. Therefore, various tilling techniques (Bertol-
acci et al. 2015; Frigo and Strumpen 2005; Guo et al. 2009;
Habich et al. 2009; Nguyen et al. 2010; Rivera and Tseng
2000; Wellein et al. 2009) have been proposed to exploit the
data locality of stencil computation.

Meanwhile, Sunway TaihuLight is the first supercomputer
with a peak performance of over 100 PFlops, ranking first in
the TOP500 list from 2016 to 2017. The Sunway SW26010
processor adopted in Sunway TaihuLight can deliver prom-
ising performance with unique heterogeneous many-core

 * Hailong Yang
 hailong.yang@buaa.edu.cn

 Biao Sun
 biaosun@buaa.edu.cn

 Mingzhen Li
 lmzhhh@buaa.edu.cn

 Jun Xu
 xujun711@sina.com

 Zhongzhi Luan
 07680@buaa.edu.cn

 Depei Qian
 depeiq@buaa.edu.cn

1 School of Computer Science and Engineering, Beihang
University, Beijing 100191, China

2 Science and Technology on Special System Simulation
Laboratory Beijing Simulation Center, Beijing 100854, China

http://orcid.org/0000-0003-1101-7927
http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00147-x&domain=pdf

323Adapting combined tiling to stencil optimizations on sunway processor

1 3

architecture. However, the performance gap between the
computation capability and memory bandwidth of Sunway
processor is even larger than CPUs and GPUs (Xu et al.
2017). Therefore, the stencil implementation without in-depth
optimization on Sunway will suffer from the extremely low
utilization of computation capability. In order to run stencil
computation efficiently, we propose a combined tilling method
to alleviate the memory bandwidth bottleneck and perform
several architecture-tailored optimizations for performance
acceleration.

Specifically, the contributions of this paper are as follows:

• We propose a combined (spatial, streaming, and temporal)
tiling method for stencil computation tailored for Sunway
processor. After carefully leveraging the special architec-
tural features of Sunway processor, the proposed method
can exploit the spatial and temporal locality of stencil com-
putation to alleviate the memory bandwidth bottleneck of
Sunway processor, which improves the performance of
stencil computation.

• We utilize double buffering to overlap the DMA (Direct
Memory Access) transfer with stencil computation, pro-
pose a vectorization method to eliminate unaligned and
overlapped SIMD (Single Instruction Multiple Data) loads,
and integrate collaborative memory accessing through
register communication to eliminate redundant memory
access and increase DMA bandwidth, which can further
improve the performance of stencil computation.

• We evaluate our implementation on six stencil benchmarks
with various memory access patterns and computation
intensities on Sunway, and demonstrate its effectiveness
with 1.97× speedup on average compared to the state-of-
the-art stencil implementation. Following that, we present
sufficient performance analysis experiments on the effects
of different optimizations, which can serve as a basis for
a comprehensive understanding of stencil optimization on
Sunway processor.

The rest of this paper is organized as follows. Section 2 intro-
duces the background of stencil computation and the Sunway
many-core architecture. Section 3 presents the related work
about the optimization of stencil computation. Section 4
describes the detailed design and implementation of our sten-
cil optimizations on Sunway. Section 5 provides the evaluation
results and performance analysis, and Sect. 6 concludes the
paper.

2 Background

2.1 Stencil computation

Stencil computation is one of the most important computa-
tion patterns in scientific computing applications. A stencil
operator sweeps through the input grid and updates the
value of each element by reading neighboring elements
based on a specific computation pattern. A stencil opera-
tor can be time-iterated, sweeping through the entire grid
multiple times. Stencil operators can be divided into dif-
ferent types according to dimension, points, shape, radius,
timestep, etc. Figure 1 is the visualization of 2D 9-point
stencil operator (2d9pt_box) with a shape of box and
radius of 1 and 3D 7-point stencil operator (3d7pt_star)
with a shape of star and radius of 1.

2.2 Architecture of Sunway processor

Sunway TaihuLight achieves a theoretical peak perfor-
mance of 125 PFlops, integrating 40,960 Sunway hetero-
geneous many-core processors. The architecture of the
Sunway processor is shown in Fig. 2. Sunway SW26010
processor contains four core groups (CG), and each CG
contains one management processing element (MPE) and
64 computing processing elements (CPE). Each CPE is
equipped with a 256-bit vector unit. For memory hier-
archy, each CG is attached to 8 GB DDR3 memory. The

Y

X

Z Y

a) 2d9pt_box b) 3d7pt_star

X

Fig. 1 The 2d9pt_box and 3d7pt_star stencil operators

NoC

8*8 CPE
Cluster

MPE

M
C

8*8 CPE
Cluster

MPE

M
C

8*8 CPE
Cluster

MPE

M
C

8*8 CPE
Cluste r

MPE

M
C

…

…

…

…

…………
64KB LD M

Memory

Memory Memory

Memory

Fig. 2 The architecture of Sunway SW26010 processor

324 B. Sun et al.

1 3

MPE has 32 KB L1 instruction cache, 32 KB L1 data
cache and 256 KB L2 cache for both instruction and data.
Each CPE has its own 16 KB L1 instruction cache and
64 KB local device memory (LDM) which is explicitly
managed by the programmer. For main memory access,
two approaches are provided, including global load/store
(gld/gst) instructions and direct memory access (DMA).
And the bandwidth of DMA is much greater than gld/gst.
Besides, Sunway processor supports low-latency on-chip
register data communication mechanism between CPEs in
the same row/column.

3 Related work

3.1 Stencil optimization on CPUs and GPUs

There are quite a few works trying to improve the perfor-
mance of stencil computation on CPUs and GPUs. Spatial
tiling is a common tiling method to exploit the parallelism
and locality of stencil computation in spatial dimensions
(Micikevicius 2009; Mostafazadeh et al. 2018). However,
spatial tiling only achieves data reuse within a single time
step. Therefore, temporal tiling was further introduced to
exploit the temporal locality (Habich et al. 2009; Wellein
et al. 2009). 3.5D blocking (Nguyen et al. 2010) was pre-
sented to exploit both spatial and temporal data locality of
stencil computation. Other tiling methods with different
tiling shapes were also proposed (Bertolacci et al. 2015;
Frigo and Strumpen 2005; Guo et al. 2009; Rivera and
Tseng 2000). There are also efficient vectorization schemes
(Yount et al. 2016; Yuan et al. 2021; Li et al. 2022) and
advanced algorithmic techniques such as folding (Li et al.
2021), tessellating (Yuan et al. 2017) and fast fourier trans-
forms (Ahmad et al. 2021) designed to further accelerate
stencil computation on CPUs. In addition, stencil domain-
specific languages (DSLs), such as STENCILGEN (Rawat
et al. 2018), AN5D (Matsumura et al. 2020), and Artemis
(Rawat et al. 2019) focus on automatic code generation for
stencil computation, which can greatly reduce the burden
of implementing high-performance stencils on CPUs and
GPUs. Moreover, performance auto-tuning frameworks
(Garvey and Abdelrahman 2015; Sun et al. 2021) have been
proposed to better adapt the stencil computation patterns to
the processor architectures.

3.2 Stencil optimization on Sunway processor

Although a large number of stencil optimizations have been
proposed on CPUs and GPUs (Bertolacci et al. 2015; Guo
et al. 2009; Habich et al. 2009; Matsumura et al. 2020;
Micikevicius 2009; Mostafazadeh et al. 2018; Nguyen et al.
2010; Rawat et al. 2018, 2019; Rivera and Tseng 2000;

Wellein et al. 2009), there are few works optimizing stencil
computation on Sunway processors. Meanwhile, the opti-
mizations of numerical operators such as GEMM (Jiang
et al. 2017), SpGEMM (Chen et al. 2019), SpMV (Liu et al.
2018), SpTV (Chen et al. 2020) have been well studied on
Sunway. Moreover, the existing works (Ao et al. 2017; Cai
et al. 2018; Fu et al. 2017; Yang et al. 2016) on Sunway
mainly focus on accelerating the large-scale applications that
contain particular stencil computation, other than optimizing
stencil computation with various patterns. For example, the
optimizations for earthquake simulation (Fu et al. 2017) and
atmospheric modeling (Ao et al. 2017) presented custom-
ized parallelization schemes to accelerate particular stencil
patterns such as 3d13pt_star. MSC (Li et al. 2021) is a new
DSL designed to generate optimized stencil codes on Sun-
way. However, MSC only applies spatial tiling optimization
tailored for Sunway architecture. In addition, there are other
works that adopted the temporal tiling method time skew-
ing (Tang et al. 2020) and proposed performance models
to guide stencil optimization on Sunway (Liu et al. 2020).
In general, the above works only provide a partial glimpse
and fail to provide an in-depth optimization study of stencil
computation with various patterns on Sunway processor.
Particularly, except (Tang et al. 2020), all above works fail
to exploit temporal tiling, and thus the data locality of sten-
cil computation in the temporal dimension. Furthermore,
without carefully addressing the unaligned and overlapped
SIMD loads, all the above works fail to achieve the desired
performance benefit of vectorization for optimizing stencil
computation on Sunway.

4 Stencil optimizations on Sunway

4.1 Spatial tiling

There is no data dependency within a single timestep in sten-
cil computation, which means that stencil computation has
parallelism in the spatial dimension. Spatial tiling is a tiling
method of stencil computation based on the spatial dimen-
sion, and it splits the computational grid into multiple tiles.
Each CG of a Suwnay processor contains 1 MPE and 64
CPEs, thus we need to parallelize the stencil computation
to 64 CPEs in order to utilize the LDM and computation
resources of CPEs. Particularly, we use spatial tiling to split
the computational grid into 64 ∗ k tiles (k = 1, 2, 3…) as
shown in Fig. 3. Each tile is loaded into the LDM of the
corresponding CPE through DMA in order to utilize the
memory bandwidth. After that, each CPE completes the
stencil computation tasks with data in LDM and writes back
the results to the main memory through DMA. Since stencil
computation requires reading neighboring elements within
radius R, each tile should contain both the computation

325Adapting combined tiling to stencil optimizations on sunway processor

1 3

region and the extra halo region. We assume the size of each
tile is: (dimx, dimy, dimz) , and the size of each grid element
is denoted as � . Because we need to load the whole tile into
the LDM of CPE, the size of a tile cannot exceed the size of
LDM, which requires: 𝜀(dimxdimydimz) < 64KB . Since the
computation region of each tile is non-overlapped, there is
overlapping between the halo region of tiles that belong to
adjacent CPEs, which means that the elements in the halo
region are accessed several times by adjacent CPEs. We
use the ratio of redundant bandwidth to represent the cost:
((1 − 2R∕dimx)(1 − 2R∕dimy)(1 − 2R∕dimz))

−1 , where R is
the radius of stencil operator (Nguyen et al. 2010). When
dimx = dimy = dimz , the ratio of redundant bandwidth gets
its minimum. However, since we use DMA as the data trans-
fer approach, according to the data transfer characteristic of
DMA, the bandwidth of DMA increases when the data trans-
fer size namely dimx gets larger, so the tile size for optimal
performance must be obtained through experiments (Li et al.
2018). This optimal tile size is a trade-off between the ratio
of redundant bandwidth and DMA bandwidth, which we
should pay attention to when using spatial tiling on Sunway.

4.2 Streaming

Stencil computation has a fixed computation pattern. Only
(1 + 2R) planes need to be read when computing one plane.
Therefore, an alternative is to use spatial tiling along two
of the three spatial dimensions and stream along the third
dimension. In this way, we no longer store the whole tile

in LDM. Instead, as shown in Fig. 4, only (1 + 2R) sub-
planes along the streaming dimension need to reside in
LDM. We use Buffer to represent the (1 + 2R) XY sub-planes
resident in LDM, the size of Buffer is (dimx, dimy, 1 + 2R) ,
which requires 𝜀((1 + 2R)dimxdimy) < 64KB . Since
streaming eliminates redundant bandwidth along the
streaming dimension, the ratio of redundant bandwidth is
((1 − 2R∕dimx)(1 − 2R∕dimy))

−1 (Nguyen et al. 2010). We
can find that streaming not only reduces redundant band-
width but also reduces the LDM occupation. Smaller LDM
occupation means that we can get larger dimx , and therefore
improve actual DMA bandwidth. Furthermore, by introduc-
ing streaming, we read one XY sub-plane at each Z iteration
and then perform the corresponding stencil computation,
rather than read the whole tile once and for all. This change
makes DMA requests scattered over each Z iteration, which
exposes more overlapped space between DMA and com-
putation at each iteration. In-depth theoretical proof can be
found in Xu et al. (2018). This positive impact of scattering
DMA requests is rarely noticed in the related work of Sun-
way processor. We will illustrate this through the experiment
in Sect. 5.

4.3 Combining spatial and temporal tiling

Temporal tiling realizes data reuse in the temporal
dimension of stencil computation by computing con-
secutive dimt timesteps without global memory access
and therefore can reduce the amount of global memory
access. The data dependency in the temporal dimen-
sion is resolved by redundant loading. As shown in
Fig. 5, we apply temporal tiling (T dimension) combined
with spatial tiling (XY dimension) and apply stream-
ing along Z dimension. Therefore, we can perform con-
secutive dimt timesteps of stencil computation with-
out global memory access, and each timestep needs to
buffer (1 + 2R) XY sub-planes in LDM, which requires
𝜀((1 + 2R)dimtdimxdimy) < 64KB . To resolve the data
dependency in the temporal dimension for temporal til-
ing, we need to redundantly load Rdimt elements along

CPE
DMA

Tile

3D Grid

...

R
R

Computation
Region

Halo
Region

Fig. 3 Spatial tiling on Sunway processor

Fig. 4 Streaming on Sunway
processor, when R = 1

...

Step 2

Z
Y
x

Streaming

Step 1 Step 3

...
LDM

LDM
LDM

Memory
 Plane

Neighbor
 Plane

Central
 Plane

326 B. Sun et al.

1 3

the X and Y dimension. So the ratio of redundant band-
width is: ((1 − 2Rdimt∕dimx)(1 − 2Rdimt∕dimy))

−1 (Nguyen
et al. 2010). In addition, temporal tiling also introduces the
overhead of redundant computation, whose computation
formula is similar. In summary, by applying combined til-
ing, we exploit the locality of stencil computation in the
temporal dimension and significantly increase the com-
putation intensity due to the reduction of global memory
access. However, noticeable overheads are introduced,
including redundant bandwidth and redundant compu-
tation. Besides, the rapid increase of the LDM occupa-
tion makes dimx smaller, which reduces the bandwidth
of DMA. These factors limit the direct effectiveness of
temporal tiling on Sunway processor. However, due to the
significant increase of computation intensity, temporal til-
ing still plays an essential role in stencil optimizations on
Sunway processor, which will be proved in Sect. 5.

4.4 Customized optimizations for Sunway
architecture

4.4.1 Double buffering

To further exploit the architectural features of Sunway pro-
cessor, we note that the DMA operation on Sunway proces-
sor is asynchronous, meaning that there is no need to wait
for the data transfer to complete. Instead, the computation
that does not depend on the data being transferred can be
performed immediately. Therefore, we employ double buff-
ering to designed optimization scheme. Each CPE allocates
two data buffers for each DMA transfer, one for computa-
tion and the other for transfer, so that the DMA transfer
and the computation are overlapped, as shown in Fig. 6. In
our design, the combined tiling streams along the Z dimen-
sion and only initiates the DMA load at first timestep. After
employing double buffering, we only need to store 1 more
XY sub-plane in LDM at first timestep for the DMA load,
which is quite small compared to the total LDM occupation

which is (2 + 2R) + (dimt − 1)(1 + 2R) , thus it can improve
the overall performance steadily.

4.4.2 Vectorization

Although the intuitive vectorization method is easy to imple-
ment for stencil computation, it faces the challenge of the
unaligned and overlapped SIMD load instructions on Sun-
way processor. For example, a stencil operator with radius
R has to read (1 + 2R) elements in its central row. Assume
that the datatype of the grid element is double and the cen-
tral element xc is 32 Bytes aligned in LDM. We emit SIMD
load instructions at xc±i (i ∈ ℕ,−R ≤ i ≤ R) respectively to
get vectors ⃗xc±i (i ∈ ℕ,−R ≤ i ≤ R). However, the SIMD
load instruction requires the data to be 32-Bytes aligned,
and otherwise each load instruction will be split into more
load/store instructions. Therefore, the overhead of unaligned
SIMD load instruction is huge. Moreover, there is much
overlap between the corresponding data region of SIMD
load instructions, which further introduces redundancy and
overhead. Therefore, we propose a stencil vectorization
method based on the vector shuffle instruction of Sunway
processor to address the challenges above. The SIMD shuf-
fle instruction is one of the fastest SIMD instructions with a
latency of one cycle. It can combine two vectors into a new
one. It chooses two DP numbers in the first vector as the first
two of the new vector and two DP numbers in the second
vector as the last two of the new vector. Therefore, we can
use SIMD load instruction respectively to get aligned vectors
⃗xc±i (i = 4k, k ∈ ℕ,−R ≤ i ≤ R), and obtain the remaining

unaligned vectors ⃗xc±i (i ≠ 4k, k ∈ ℕ,−R ≤ i ≤ R) through
shuffle instructions. Figure 7 shows the implementation of
stencil vectorization, and the radius of the stencil operator is

Memory
Plane

Neighbor
Plane

Central
Plane

Compute

Compute

Compute

timestep

DMA

DMA

Z

Streaming

Temporal Tiling

LDM

Fig. 5 Combined tiling on Sunway processor, when dim
t
= 3 and

R = 1

Compute1 Compute2 Compute3

(a) Without double buffering, DMA and computation cannot overlap

DMA2

Compute1 Compute2

DMA3

Compute3

DMA4

......

(b) With double buffering, DMA and computation can overlap

DMA1

DMA1 DMA2 DMA3

Fig. 6 Double buffering optimization

4 1 2 3 4 1 2321 3 4

simd_vshffsimd_vshff

simd_vshff simd_vshff

3 4 1 2 3 4 1 2

2 34 1 32 4 1

Fig. 7 The stencil vectorization method based on vector shuffle

327Adapting combined tiling to stencil optimizations on sunway processor

1 3

2. The vectorization method for other stencil operators with
different radius can be deduced based on the above proposed
method and will not be elaborated here.

4.4.3 Register communication

After applying combined tiling, we exploit the data reuse
in the temporal dimension. Meanwhile, the halo region
is increased from R to Rdimt and the tile size becomes
small due to larger LDM occupation, which increases the
amount of redundant memory access (i.e., redundant band-
width) and decreases the bandwidth of DMA (i.e., unsatu-
rated bandwidth). To resolve this issue, we integrate the
collaborative memory accessing scheme (Ao et al. 2017)
into our combined tiling algorithm. The number of CPEs
in collaborative memory accessing groups should be 1,
2, 4, 8 due to the Sunway hardware implementation of
CG and register communication. Based on our empiri-
cal study, the optimal number of CPEs within a group is
4, which is also adopted in Ao et al. (2017). Therefore, as
shown in Fig. 8, 4 CPEs are bundled into a collaborative
memory accessing group, and each CPE requests a chunk
of continuous 4dimx − 6Rdimt data. The LDM layout of
each CPE is then rearranged through exchanging data via
register communication, and finally each CPE obtains its
required data. With this scheme, redundant bandwidth is
reduced from ((1 − 2Rdimt∕dimx)(1 − 2Rdimt∕dimy))

−1 to
((1 − 2Rdimt∕(4dimx − 6Rdimt))(1 − 2Rdimt∕dimy))

−1 a n d
DMA bandwidth will increase significantly when the origi-
nal dimx is small. However, the overhead of on-chip register
data communication and LDM layout rearrangement is also
significant. Based on the above analysis, we can infer that
this register communication approach is only effective when
the redundant bandwidth is large and the DMA bandwidth

is unsaturated, in other words, when the halo region is large
and the tile size is small. We will further demonstrate it in
Sect. 5.

5 Evaluation

5.1 Experimental setup

In the experiments, we select six stencil operators as bench-
marks, whose characteristics are listed in Table 1. We use
Athread to implement the optimized version of benchmarks
and set the number of CPE to 64. We compare our opti-
mized implementation CTS with the state-of-the-art stencil
DSL MSC (Li et al. 2021) and the state-of-the-art stencil
implementation POS (Tang et al. 2020). Compared with
POS, the stencil implementation for atmospheric modeling
(Ao et al. 2017) did not apply time skewing but proposed a
collaborative data accessing scheme based on register com-
munication. However, it is not included in the performance
comparison since the customized scheme only applies to 3D
stencils and is only effective in limited cases. We will dem-
onstrate it in the performance analysis experiment. Table 2

Fig. 8 The collaborative mem-
ory accessing scheme based on
register communication

CPE1CPE0 CPE2 CPE3

CPE0

CPE2

CPE0

CPE1

CPE2

CPE3

dimtCPE0 CPE1

CPE2 CPE3

② Register Communica�on

① Collabora�ve Memory Accessing
③ LDM layout rearrangement

CPE3

CPE1

Table 1 The stencil benchmarks
used in evaluation

Stencil Dimension Point Shape Radius FLOPs/cell Timestep

2d9pt_star 2D 9 Star 2 17 4
2d9pt_box 2D 9 Box 1 17 4
Gaussian 2D 25 Box 2 50 4
3d7pt_star 3D 7 Star 1 13 4
3d27pt_box 3D 27 Box 1 53 4
Helmholtz 3D 13 Star 2 17 4

Table 2 The parameter settings of MSC, POS and CTS

Stencil Grid size MSC tile size POS tile size CTS tile size

2d9pt_star 20482 (1,256,8) (4,256,6) (4,256,6)
2d9pt_box 20482 (1,256,8) (4,512,4) (4,512,4)
Gaussian 20482 (1,128,16) (2,512,6) (2,512,6)
3d7pt_star 1283 (1,64,8,4) (2,64,8,4) (2,64,8,4)
3d27pt_box 1283 (1,64,8,4) (2,64,8,4) (2,64,8,4)
Helmholtz 1283 (1,64,8,4) (2,32,8,6) (2,32,8,6)

328 B. Sun et al.

1 3

presents the optimal parameter settings of MSC, POS, and
CTS across the benchmarks in experiments. For 2D stencils,
the tile size parameters are (dimt,dimx,dimy). For 3D stencils,
the tile size parameters are (dimt,dimx , dimy,dimz). To meas-
ure the performance impact of six optimization methods, we
conduct several performance analysis experiments and pro-
vide the roofline model analysis. Each experiment has been
run ten times, with the average result reported. Note that, we
focus on stencil optimization on a CG of Sunway SW26010
processor, which is orthogonal to large-scale optimization
and is applicable in large-scale execution.

5.2 Performance comparison

The performance comparison results are shown in Fig. 9.
The performance of our optimized implementation CTS
achieves 3.03× speedup on average compared with the
implementation generated by MSC and 1.97× speedup on
average compared with the implementation of POS. This
is because MSC only applies spatial tiling optimization and
POS only applies spatial tiling, time skewing, and double
buffering optimizations. In contrast, our implementation
realizes data reuse in the spatial and temporal dimension of
stencil computation through combined tiling and further lev-
erages the computation resource of Sunway through double
buffering, vectorization, and register communication. The
significant performance improvement of our implementa-
tion demonstrates the importance of well-designed stencil
optimizations tailored for Sunway processor.

5.3 Performance analysis

5.3.1 Ablation experiment results

Fig. 10 shows the results of ablation experiment. The base-
line is the implementation generated by MSC. Among the
5 optimized implementations, the implementation applying
only spatial tiling leads to 1.02× speedup over the baseline
(MSC) on average. This is because although spatial tiling can
parallelize the stencil computation to 64 CPEs, the perfor-
mance is still bounded by the limited memory bandwidth of
Sunway processor. By introducing streaming, the speedup
increases to 1.44× on average, which proves that streaming
can improve the overall performance considerably by reduc-
ing redundant bandwidth and increasing DMA bandwidth.
The implementation which incrementally uses temporal til-
ing obtains a 1.43× speedup on average. Although temporal
tiling fails to provide stable performance improvement due
to its overhead, including redundant bandwidth, redundant
computation, and DMA bandwidth reduction, however, it
can increase computation intensity significantly and thus
create more optimization space for subsequent optimiza-
tions. We will further explain it in the performance analysis
experiment. By employing double buffering, the speedup
increases to 1.61× on average. A further 1.84× speedup is
achieved by enabling the vectorization. It provides a nota-
ble 2.31× performance improvement on stencil benchmarks
with high computation intensity, including 2D stencils with
high-degree temporal tiling (e.g., 2d9pt_star, 2d9pt_box,
Gaussian), as well as high-order 3D stencils with box shape
(e.g., 3d27pt_box). These stencil benchmarks can be com-
pute-bound without utilizing the computation capability of
the vector units through vectorization. Register communica-
tion, an optional optimization scheme that only applies to 3D
stencils and takes effect in limited cases, has performance
promotion of 5.9% and 8.6% respectively on 3d7pt_star and
Helmholtz, while fails to work on 3d27pt_box. The main
reason is that the collaborative memory accessing scheme
based on register communication only takes effect on mem-
ory-bound stencil benchmarks with high overheads of redun-
dant bandwidth and unsaturated DMA bandwidth. We will

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2d9pt_star 2d9pt_box Gaussian 3d7pt_star 3d27pt_box Helmholtz

Ti
m
e(
μs
)

MSC POS CTS

Fig. 9 Performance comparison between MSC, POS, and our imple-
mentation

Fig. 10 Ablation experiment
results, where y-axis indicates
the speedup normalized to MSC

0

1

2

3

4

5

6

2d9pt_star 2d9pt_box Gaussian 3d7pt_star 3d27pt_box Helmholtz

Sp
ee

du
p

MSC +Spatial Tiling +Streaming +Temporal Tiling +Double Buffering +SIMD +Register Comunication

329Adapting combined tiling to stencil optimizations on sunway processor

1 3

further investigate it in the performance analysis experiment.
And the final implementation using all six optimization
methods achieves an impressive 3.03× speedup on average.
It shows that after applying a series of optimization methods
tailed for Sunway, we alleviate the bottleneck of memory
bandwidth and fully exploit the architecture features of Sun-
way processor.

5.3.2 The impact of temporal tiling

To further verify the performance impact of temporal tiling,
we compared the performance of the implementation using
all the optimizations except temporal tiling with the final
implementation using all the optimizations including tem-
poral tiling, and the final experimental results are shown in
Fig. 11. Compared with the version without temporal tiling,
the version with temporal tiling achieves 1.59× speedup on
average. For the four stencil benchmarks with low compu-
tation intensity (2d9pt_star, 2d9pt_box, 3d7pt_star, Helm-
holtz), it achieves 1.80× speedup on average. And in con-
trast, for the remaining two stencil benchmarks with high
computation intensity (Gassuian, 3d27pt_box), it achieves
1.15× speedup on average. This indicates that the increase
of computation intensity is the main reason for the optimiza-
tion effect of temporal tiling. Therefore, stencil benchmarks
with low computation intensity obtain better optimization
results due to the severe memory-bound nature, while sten-
cil benchmarks with high computation intensity can still
be compute-bound after enabling temporal tiling, and thus
temporal tiling becomes less effective on these benchmarks.

5.3.3 The impact of register communication

As we mentioned in Sect. 4, through grouping several CPEs
to access the main memory collaboratively, the register
communication optimization can decrease redundant band-
width and increase DMA bandwidth. To demonstrate this,
we compared the optimized Helmholtz benchmark with the
one without collaborative memory accessing, disabling tem-
poral tiling to obtain clearer results. The experimental results
are shown in Fig. 12. We can find that the register commu-
nication optimization can accelerate the benchmark in most

tile size settings. Besides, the acceleration is more signifi-
cant on settings with smaller tile size in total or in x-axis.
However, the acceleration becomes minor or even negative
when the tile size is 32 × 4 or 32 × 8 . This is because when
the tile size is large, DMA bandwidth is close to saturation
due to the large DMA granularity, and the ratio of redundant
bandwidth is relatively small. The performance improve-
ment brought by the increase of DMA bandwidth and the
decrease of redundant bandwidth is no longer significant.
Therefore, the collaborative memory accessing scheme is
only effective when the tile size is small and the halo region
is large.

With the analysis above, we know that the register com-
munication optimization reduces the amount of memory
access and increases the memory access bandwidth, there-
fore applicable to memory-bound stencils. Meanwhile,
although the overheads of register communication on 3d7pt_
star and 3d27pt_box are similar due to the same radius and
tile size, the optimized 3d27pt_box can be compute-bound
due to the higher computation intensity. Therefore, the
overhead of on-chip register data communication and LDM
layout rearrangement cannot be amortized, and hence the
register communication optimization has side effects on the
performance of 3d27pt_box.

5.3.4 The impact of scattering DMA requests

In Sect. 4, we mention that streaming can scatter the DMA
requests. To study the impact of scattering DMA requests,
we take the implementation with only spatial tiling as the
baseline Spatial Tiling. And we provide two implementa-
tions with streaming: (1) Streaming shares the same param-
eters with the baseline and therefore serves to scatter DMA
requests, leaving other factors unchanged, (2) Streaming-
opt uses the optimal parameters of tile size, which reduces
redundant bandwidth and increases DMA bandwidth. The
final experimental results of the performance comparison
are shown in Fig. 13. The performance improvement of
Streaming compared with Spatial Tiling only comes from

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

2d9pt_star 2d9pt_box Gaussian 3d7pt_star 3d27pt_box Helmholtz

Ti
m

e(
μs

)
w/out Temporal Tiling with Temporal Tiling

Fig. 11 The impact of temporal tiling

15000

25000

35000

45000

55000

65000

4x16 4x32 8x16 16x8 32x4 32x8

Ti
m

e
(μ

s)

Tile Size

w/out register communication with register communication

Fig. 12 The impact of collaborative memory accessing using register
communication

330 B. Sun et al.

1 3

the scattering DMA requests. On the other hand, the per-
formance improvement of Streaming-opt compared with
Streaming comes from the optimal parameters of tile size.
It can be seen that Streaming has a performance improve-
ment of 8.3% on average compared with the baseline, which
proves the positive performance effect of scattering DMA
requests.

Unlike the baseline which requires initiating all DMA
requests at once to read the whole tile, Steaming read one XY
sub-plane at each Z iteration, which makes DMA requests
scattered over each Z iteration. So after applying streaming,
DMA and computation can be overlapped at each iteration,
and thus the total overlapped time increases considerably,
which improves the overall performance. In particular, the
DMA request of 2D stencil is larger due to the larger dimx
of 2D tiles, which makes the improvement of scattering
DMA requests more significant on 2D stencil benchmarks.
The positive impact of scattering DMA requests has rarely
been noticed in related optimization work on Sunway. And
through the experiment, we emphasize that scattering DMA
requests could improve the overall performance, especially
when the transfer size of DMA is large.

5.4 Tile size sensitivity analysis

To better understand the performance sensitivity of tile size,
we measure the performance under different settings of tile
size on Helmholtz. Other stencil benchmarks show similar
results as Helmholtz. The settings of dimt = 4 are omitted as
LDM is over-subscribed under most settings of dimt = 4 . In
Fig. 14, (dimx − 2Rdimt, dimy − 2Rdimt) represents the size
of the inner region when the tile size is (dimy, dimx) , and the
pure white cell means that LDM is over-subscribed under
the tile size setting. We can find that a larger tile size often
leads to better performance due to the better exploitation of
spatial and temporal locality. Although the redundant band-
width reaches the minimum when dimx = dimy as mentioned
in Sect. 4, a larger dimx can increase DMA bandwidth, there-
fore dimx plays a much more significant role than dimy in
the performance of benchmark. When the setting turns to
dimt = 2 to increase the computation intensity, due to the
doubled LDM occupation, the reachable maximum tile size
is much smaller compared to when dimt = 1 , which can be

observed from the number of pure white cells in the figure.
Therefore, the bandwidth of DMA becomes smaller when
dimt = 2.

With the analysis above, we can conclude that as long as
the LDM occupation is smaller than 64 KB, the overall tile
size should be as large as possible. The optimal value of dimx
and dimy is a trade-off between redundant bandwidth and
DMA bandwidth, while dimx is much more significant. And
the optimal value of dimt is a trade-off between computation
intensity and DMA bandwidth.

5.5 Roofline model analysis

To better understand the effects of our proposed optimiza-
tions for Sunway processor, we perform an analysis based
on the roofline model. Due to the similar nature of stencil
benchmarks, we only provide the roofline model analysis
of Helmholtz for simplicity. As shown in Fig. 15, the com-
putation intensity of the serial version on MPE is only 0.23
Flops/byte. After introducing spatial tiling, we parallelize
the stencil computation to 64 CPEs, and each tile is stored in
the LDM of the corresponding CPE, which greatly reduces
the amount of memory access. As a result, the computation
intensity increases to 0.67 Flops/Byte. Streaming improves
the computation intensity through eliminating redundant
memory access. Besides, Streaming increases the band-
width of DMA due to the larger block size resulted by the
reduction of LDM occupation. The computation intensity
is increased by 2× after using temporal tiling, which creates

Fig. 13 The impact of scattering
DMA requests

0

10000

20000

30000

40000

50000

60000

2d9pt_star 2d9pt_box Gaussian 3d7pt_star 3d27pt_box Helmholtz

Ti
m

e(
μs

)

Spatial Tiling Streaming Streaming-opt

Fig. 14 Tile size sensitivity analysis of Helmholtz, where the value in
each cell indicates the performance under the tile size, normalized to
the best performance under optimal tile size

331Adapting combined tiling to stencil optimizations on sunway processor

1 3

more optimization space for subsequent optimization. Dou-
ble buffering and Vectorization further improve the perfor-
mance while keeping the computation intensity unchanged.
The computation instensity is further increased by the reg-
ister communication optimization due to the decrease of
redundant memory access. The register communication
optimization also increases DMA bandwidth through the
collaborative memory accessing.

The roofline model of a Sunway CG reveals that 33.84
Flops of calculation should be performed when accessing
one-byte data in memory to fully utilize its performance.
Compared with the computation intensity that we achieve,
increasing the computation intensity is still the key to
improving the performance of memory-bound stencil bench-
marks, which is the main direction for our future work.

6 Conclusion

In this paper, we proposed a combined (spatial, streaming,
and temporal) tiling method tailored for Sunway processor.
Through effectively exploiting the massive parallelism and
data locality of stencil computation, the proposed method
mitigates the performance gap between the computation
capability and the memory bandwidth of Sunway proces-
sor. Further performance improvements have been achieved
by implementing double buffering, vectorization, and regis-
ter communication. The experimental results on six stencil
benchmarks demonstrate the effectiveness of our method,
which achieves 1.97× speedup on average compared to the
state-of-the-art stencil implementation on Sunway proces-
sor. Various performance analysis experiments are further
presented, which can serve as a basis for the comprehensive
understanding of stencil optimizations on Sunway processor.

Acknowledgements This work was supported by National Key
Research and Development Program of China (No. 2022ZD0117805),
National Natural Science Foundation of China (No. 62072018
and U22A2028), the Fundamental Research Funds for the Central

Universities, and Iluvatar CoreX semiconductor Co., Ltd. Hailong
Yang is the corresponding author.

Data availability The authors confirm that the data supporting the find-
ings of this study are available within the article.

Declarations

Conflict of interest The authors declared that they have no conflicts of
interest to this work.

References

Ahmad, Z., Chowdhury, R., Das, R., Ganapathi, P., Gregory, A., Zhu,
Y.: Fast stencil computations using fast fourier transforms. In:
Proceedings of the 33rd ACM Symposium on Parallelism in Algo-
rithms and Architectures, pp. 8–21 (2021)

Ao, Y., Yang, C., Wang, X., Xue, W., Fu, H., Liu, F., Gan, L., Xu, P.,
Ma, W.: 26 pflops stencil computations for atmospheric modeling
on sunway taihulight. In: 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 535–544 (2017).
https:// doi. org/ 10. 1109/ IPDPS. 2017.9

Bertolacci, I.J., Olschanowsky, C., Harshbarger, B., Chamberlain, B.L.,
Wonnacott, D.G., Strout, M.M.: Parameterized diamond tiling for
stencil computations with chapel parallel iterators. In: Proceedings
of the 29th ACM on International Conference on Supercomputing,
pp. 197–206 (2015)

Cai, Y., Yang, C., Ma, W., Ao, Y.: Extreme-scale realistic stencil com-
putations on sunway taihulight with ten million cores. In: 2018
18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), pp. 566–571 (2018). https:// doi. org/
10. 1109/ CCGRID. 2018. 00086

Chen, Y., Li, K., Yang, W., Xiao, G., Xie, X., Li, T.: Performance-
aware model for sparse matrix-matrix multiplication on the sun-
way taihulight supercomputer. IEEE Trans. Parallel Distrib. Syst.
30(4), 923–938 (2019). https:// doi. org/ 10. 1109/ TPDS. 2018. 28711
89

Chen, Y., Xiao, G., Özsu, M.T., Liu, C., Zomaya, A.Y., Li, T.:
AESPTV: an adaptive and efficient framework for sparse tensor-
vector product kernel on a high-performance computing platform.
IEEE Trans. Parallel Distrib. Syst. 31(10), 2329–2345 (2020).
https:// doi. org/ 10. 1109/ TPDS. 2020. 29904 29

Dongarra, J., Peterson, G., Tomov, S., Allred, J., Natoli, V., Richie,
D.: Exploring new architectures in accelerating cfd for air force

Fig. 15 The roofline model of
Helmholtz stencil on Sunway

https://doi.org/10.1109/IPDPS.2017.9
https://doi.org/10.1109/CCGRID.2018.00086
https://doi.org/10.1109/CCGRID.2018.00086
https://doi.org/10.1109/TPDS.2018.2871189
https://doi.org/10.1109/TPDS.2018.2871189
https://doi.org/10.1109/TPDS.2020.2990429

332 B. Sun et al.

1 3

applications. In: 2008 DoD HPCMP Users Group Conference, pp.
472–478. IEEE (2008)

Frigo, M., Strumpen, V.: Cache oblivious stencil computations. In:
Proceedings of the 19th Annual International Conference on
Supercomputing, pp. 361–366 (2005)

Fu, H., He, C., Chen, B., Yin, Z., Zhang, Z., Zhang, W., Zhang, T.,
Xue, W., Liu, W., Yin, W., et al.: 9-pflops nonlinear earthquake
simulation on sunway taihulight: enabling depiction of 18-hz and
8-meter scenarios. In: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis, pp. 1–12 (2017)

Garvey, J.D., Abdelrahman, T.S.: Automatic performance tuning of
stencil computations on gpus. In: 2015 44th International Confer-
ence on Parallel Processing, pp. 300–309. IEEE (2015)

Guo, J., Bikshandi, G., Fraguela, B.B., Padua, D.: Writing productive
stencil codes with overlapped tiling. Concurr. Comput. Pract. Exp.
21(1), 25–39 (2009)

Habich, J., Zeiser, T., Hager, G., Wellein, G.: Enabling temporal block-
ing for a lattice Boltzmann flow solver through multicore-aware
wavefront parallelization. In: 21st International Conference on
Parallel Computational Fluid Dynamics, pp. 178–182 (2009)

Jiang, L., Yang, C., Ao, Y., Yin, W., Ma, W., Sun, Q., Liu, F., Lin,
R., Zhang, P.: Towards highly efficient dgemm on the emerg-
ing sw26010 many-core processor. In: 2017 46th International
Conference on Parallel Processing (ICPP), pp. 422–431 (2017).
https:// doi. org/ 10. 1109/ ICPP. 2017. 51

Li, L., Fang, J., Fu, H., Jiang, J., Zhao, W., He, C., You, X., Yang,
G.: swcaffe: A parallel framework for accelerating deep learning
applications on sunway taihulight. In: 2018 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 413–422
(2018). https:// doi. org/ 10. 1109/ CLUST ER. 2018. 00087

Li, M., Liu, Y., Yang, H., Hu, Y., Sun, Q., Chen, B., You, X., Liu, X.,
Luan, Z., Qian, D.: Automatic code generation and optimization of
large-scale stencil computation on many-core processors. In: 50th
International Conference on Parallel Processing, pp. 1–12 (2021)

Li, K., Yuan, L., Zhang, Y., Yue, Y.: Reducing redundancy in data
organization and arithmetic calculation for stencil computations.
In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–15
(2021)

Li, K., Yuan, L., Zhang, Y., Yue, Y., Cao, H.: An efficient vectoriza-
tion scheme for stencil computation. In: 2022 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp.
650–660. IEEE (2022)

Liu, C., Xie, B., Liu, X., Xue, W., Yang, H., Liu, X.: Towards efficient
spmv on sunway manycore architectures. In: Proceedings of the
2018 International Conference on Supercomputing. ICS ’18, pp.
363–373. Association for Computing Machinery, New York, NY,
USA (2018). https:// doi. org/ 10. 1145/ 32052 89. 32053 13

Liu, Y., Liu, L., Hu, M., Wang, W., Xue, W., Zhu, Q.: Performance
modeling of stencil computation on sw26010 processors. In: Qiu,
M. (ed.) Algorithms and Architectures for Parallel Processing, pp.
386–400. Springer, Cham (2020)

Matsumura, K., Zohouri, H.R., Wahib, M., Endo, T., Matsuoka, S.:
An5d: automated stencil framework for high-degree temporal
blocking on gpus. In: Proceedings of the 18th ACM/IEEE Inter-
national Symposium on Code Generation and Optimization, pp.
199–211 (2020)

Micikevicius, P.: 3d finite difference computation on gpus using cuda.
In: Proceedings of 2nd Workshop on General Purpose Processing
on Graphics Processing Units, pp. 79–84 (2009)

Mostafazadeh, B., Marti, F., Liu, F., Chandramowlishwaran, A.: Roof-
line guided design and analysis of a multi-stencil cfd solver for
multicore performance. In: 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 753–762. IEEE
(2018)

Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5-d block-
ing optimization for stencil computations on modern cpus and
gpus. In: SC ’10: Proceedings of the 2010 ACM/IEEE Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–13 (2010). https:// doi. org/ 10. 1109/
SC. 2010.2

Powers, J.G., Klemp, J.B., Skamarock, W.C., Davis, C.A., Dudhia, J.,
Gill, D.O., Coen, J.L., Gochis, D.J., Ahmadov, R., Peckham, S.E.,
et al.: The weather research and forecasting model: overview, sys-
tem efforts, and future directions. Bull. Am. Meteor. Soc. 98(8),
1717–1737 (2017)

Rawat, P.S., Vaidya, M., Sukumaran-Rajam, A., Ravishankar, M.,
Grover, V., Rountev, A., Pouchet, L.-N., Sadayappan, P.: Domain-
specific optimization and generation of high-performance gpu
code for stencil computations. Proc. IEEE 106(11), 1902–1920
(2018)

Rawat, P.S., Vaidya, M., Sukumaran-Rajam, A., Rountev, A., Pouchet,
L.-N., Sadayappan, P.: On optimizing complex stencils on gpus.
In: 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 641–652. IEEE (2019)

Rivera, G., Tseng, C.-W.: Tiling optimizations for 3d scientific compu-
tations. In: SC’00: Proceedings of the 2000 ACM/IEEE Confer-
ence on Supercomputing, p. 32. IEEE (2000)

Sun, Q., Liu, Y., Yang, H., Jiang, Z., Liu, X., Dun, M., Luan, Z., Qian,
D.: cstuner: Scalable auto-tuning framework for complex stencil
computation on gpus. In: 2021 IEEE International Conference on
Cluster Computing (CLUSTER) (2021)

Tang, Y., Li, M., Chen, Z., Xue, C., Zhao, C., Yang, H.: Parallel opti-
mization of stencil computation base on sunway taihulight. In:
Sun, X., Wang, J., Bertino, E. (eds.) Artificial Intelligence and
Security, pp. 141–152. Springer, Singapore (2020)

Wellein, G., Hager, G., Zeiser, T., Wittmann, M., Fehske, H.: Efficient
temporal blocking for stencil computations by multicore-aware
wavefront parallelization. In: 2009 33rd Annual IEEE Interna-
tional Computer Software and Applications Conference, vol. 1,
pp. 579–586. IEEE (2009)

Xu, Z., Lin, J., Matsuoka, S.: Benchmarking sw26010 many-core pro-
cessor. In: 2017 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), pp. 743–752 (2017).
https:// doi. org/ 10. 1109/ IPDPSW. 2017.9

Xu, S., Xu, Y., Xue, W., Shen, X., Zheng, F., Huang, X., Yang, G.:
Taming the“ monster”: Overcoming program optimization chal-
lenges on sw26010 through precise performance modeling. In:
2018 IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), pp. 763–773. IEEE (2018)

Yang, C., Xue, W., Fu, H., You, H., Wang, X., Ao, Y., Liu, F., Gan, L.,
Xu, P., Wang, L., et al.: 10m-core scalable fully-implicit solver for
nonhydrostatic atmospheric dynamics. In: SC’16: Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 57–68. IEEE (2016)

Yount, C.R., Tobin, J., Breuer, A., Duran, A.: Yask-yet another stencil
kernel: A framework for hpc stencil code-generation and tuning.
2016 Sixth International Workshop on Domain-Specific Lan-
guages and High-Level Frameworks for High Performance Com-
puting (WOLFHPC), pp. 30–39 (2016)

Yuan, L., Zhang, Y., Guo, P., Huang, S.: Tessellating stencils. In: Pro-
ceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–13 (2017)

Yuan, L., Cao, H., Zhang, Y., Li, K., Lu, P., Yue, Y.: Temporal vectori-
zation for stencils. In: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis. SC ’21. Association for Computing Machinery, New
York, NY, USA (2021). https:// doi. org/ 10. 1145/ 34588 17. 34761 49

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the

https://doi.org/10.1109/ICPP.2017.51
https://doi.org/10.1109/CLUSTER.2018.00087
https://doi.org/10.1145/3205289.3205313
https://doi.org/10.1109/SC.2010.2
https://doi.org/10.1109/SC.2010.2
https://doi.org/10.1109/IPDPSW.2017.9
https://doi.org/10.1145/3458817.3476149

333Adapting combined tiling to stencil optimizations on sunway processor

1 3

author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Biao Sun is working toward the
graduate degree in the School of
Computer Science and Engineering,
Beihang University. He is currently
working on performance optimiza-
tion of scientific applications. His
research interests include HPC, per-
formance analysis and optimization.

Mingzhen Li is a PhD student in
School of Computer Science and
Engineering, Beihang University.
He is currently working on identi-
fying performance opportunities for
scientific applications. His research
interests include HPC, performance
optimization, and code generation.

Hailong yang is an associate profes-
sor in School of Computer Science
and Engineering, Beihang Univer-
sity. He received the Ph.D degree in
the School of Computer Science and
Engineering, Beihang University in
2014. His research interests include
parallel and distributed computing,
HPC, performance optimization and
energy efficiency.

Jun Xu is a senior engineer in
Beijing Simulation Center of the
Second Institute of CASIC. She
received the Ph.D degree of com-
puter science and technology in
Zhejiang University in 2011. Her
research interest is modeling and
simulation of weapon equipment
system.

Zhongzhi Luan received the Ph.D.
in the School of Computer Science
of Xi’an Jiaotong University. He is
an Associate Professor of Computer
Science and Engineering, and Assis-
tant Director of the Sino-German
Joint Software Institute (JSI) Labo-
ratory at Beihang University, China.
Since 2003, His research interests
including distributed computing,
parallel computing, grid comput-
ing, HPC and the new generation of
network technology.

Depei Qian is a professor at the
Department of Computer Science
and Engineering, Beihang Univer-
sity, China. He received his master
degree from University of North
Texas in 1984. He is currently serv-
ing as the chief scientist of China
National High Technology Program
(863 Program) on high productiv-
ity computer and service environ-
ment. He is also a fellow of China
Computer Federation (CCF). His
research interests include innovative
technologies in distributed comput-
ing, high performance computing
and computer architecture.

	Adapting combined tiling to stencil optimizations on sunway processor
	Abstract
	1 Introduction
	2 Background
	2.1 Stencil computation
	2.2 Architecture of Sunway processor

	3 Related work
	3.1 Stencil optimization on CPUs and GPUs
	3.2 Stencil optimization on Sunway processor

	4 Stencil optimizations on Sunway
	4.1 Spatial tiling
	4.2 Streaming
	4.3 Combining spatial and temporal tiling
	4.4 Customized optimizations for Sunway architecture
	4.4.1 Double buffering
	4.4.2 Vectorization
	4.4.3 Register communication

	5 Evaluation
	5.1 Experimental setup
	5.2 Performance comparison
	5.3 Performance analysis
	5.3.1 Ablation experiment results
	5.3.2 The impact of temporal tiling
	5.3.3 The impact of register communication
	5.3.4 The impact of scattering DMA requests

	5.4 Tile size sensitivity analysis
	5.5 Roofline model analysis

	6 Conclusion
	Acknowledgements
	References

