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Abstract
Stencil is one of the indispensable computation patterns in scientific applications, which is a long-standing optimization target 
in the field of high performance computing (HPC). The Sunway processor adopted in Sunway TaihuLight supercomputer 
has demonstrated its performance potential with unique heterogeneous many-core architecture. Although a large number 
of optimization methods have been proposed, the memory-bound nature of stencil computation and the limited bandwidth 
of Sunway processor make it challenging to adapt stencil computation efficiently on Sunway processor. To better use the 
computation capability of Sunway processor, we propose a combined tiling optimization of stencil computation tailored for 
the architectural features. In addition, we implement double buffering, vectorization, and register communication to further 
accelerate stencil computation on Sunway processor. We evaluate our method on six stencil benchmarks with different orders 
and shapes (thus different memory access patterns and computation intensities). The experimental results show that our 
implementation can achieve 1.97× speedup on average compared to the state-of-the-art stencil implementation on Sunway.

Keywords Stencil computation · Sunway processor · Performance optimization · Combined tiling

1 Introduction

Stencil is an important and indispensable building block 
of modern scientific applications. It is widely used in the 
fields of weather prediction (Powers et al. 2017), earth-
quake simulation (Fu et al. 2017), fluid dynamic (Dongarra 
et al. 2008) and etc. Therefore, performance optimization 

of stencil computation has been a long-standing research 
topic in the field of HPC (High Performance Computing) 
ever since. Although tremendous research efforts have been 
devoted, stencil computation is challenging for performance 
optimization due to its memory-bound nature.

There are already a large number of studies on the per-
formance optimization of stencil computation on CPUs and 
GPUs (Bertolacci et al. 2015; Guo et al. 2009; Habich et al. 
2009; Matsumura et al. 2020; Micikevicius 2009; Mosta-
fazadeh et al. 2018; Nguyen et al. 2010; Rawat et al. 2018, 
2019; Rivera and Tseng 2000; Wellein et al. 2009). Although 
the computation capability of CPUs and GPUs has been 
increasing rapidly, their limited memory bandwidth makes it 
difficult for stencil computation to fully utilize the computa-
tion resources. Therefore, various tilling techniques (Bertol-
acci et al. 2015; Frigo and Strumpen 2005; Guo et al. 2009; 
Habich et al. 2009; Nguyen et al. 2010; Rivera and Tseng 
2000; Wellein et al. 2009) have been proposed to exploit the 
data locality of stencil computation.

Meanwhile, Sunway TaihuLight is the first supercomputer 
with a peak performance of over 100 PFlops, ranking first in 
the TOP500 list from 2016 to 2017. The Sunway SW26010 
processor adopted in Sunway TaihuLight can deliver prom-
ising performance with unique heterogeneous many-core 
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architecture. However, the performance gap between the 
computation capability and memory bandwidth of Sunway 
processor is even larger than CPUs and GPUs (Xu et al. 
2017). Therefore, the stencil implementation without in-depth 
optimization on Sunway will suffer from the extremely low 
utilization of computation capability. In order to run stencil 
computation efficiently, we propose a combined tilling method 
to alleviate the memory bandwidth bottleneck and perform 
several architecture-tailored optimizations for performance 
acceleration.

Specifically, the contributions of this paper are as follows:

• We propose a combined (spatial, streaming, and temporal) 
tiling method for stencil computation tailored for Sunway 
processor. After carefully leveraging the special architec-
tural features of Sunway processor, the proposed method 
can exploit the spatial and temporal locality of stencil com-
putation to alleviate the memory bandwidth bottleneck of 
Sunway processor, which improves the performance of 
stencil computation.

• We utilize double buffering to overlap the DMA (Direct 
Memory Access) transfer with stencil computation, pro-
pose a vectorization method to eliminate unaligned and 
overlapped SIMD (Single Instruction Multiple Data) loads, 
and integrate collaborative memory accessing through 
register communication to eliminate redundant memory 
access and increase DMA bandwidth, which can further 
improve the performance of stencil computation.

• We evaluate our implementation on six stencil benchmarks 
with various memory access patterns and computation 
intensities on Sunway, and demonstrate its effectiveness 
with 1.97× speedup on average compared to the state-of-
the-art stencil implementation. Following that, we present 
sufficient performance analysis experiments on the effects 
of different optimizations, which can serve as a basis for 
a comprehensive understanding of stencil optimization on 
Sunway processor.

The rest of this paper is organized as follows. Section 2 intro-
duces the background of stencil computation and the Sunway 
many-core architecture. Section 3 presents the related work 
about the optimization of stencil computation. Section 4 
describes the detailed design and implementation of our sten-
cil optimizations on Sunway. Section 5 provides the evaluation 
results and performance analysis, and Sect. 6 concludes the 
paper.

2  Background

2.1  Stencil computation

Stencil computation is one of the most important computa-
tion patterns in scientific computing applications. A stencil 
operator sweeps through the input grid and updates the 
value of each element by reading neighboring elements 
based on a specific computation pattern. A stencil opera-
tor can be time-iterated, sweeping through the entire grid 
multiple times. Stencil operators can be divided into dif-
ferent types according to dimension, points, shape, radius, 
timestep, etc. Figure 1 is the visualization of 2D 9-point 
stencil operator (2d9pt_box) with a shape of box and 
radius of 1 and 3D 7-point stencil operator (3d7pt_star) 
with a shape of star and radius of 1.

2.2  Architecture of Sunway processor

Sunway TaihuLight achieves a theoretical peak perfor-
mance of 125 PFlops, integrating 40,960 Sunway hetero-
geneous many-core processors. The architecture of the 
Sunway processor is shown in Fig. 2. Sunway SW26010 
processor contains four core groups (CG), and each CG 
contains one management processing element (MPE) and 
64 computing processing elements (CPE). Each CPE is 
equipped with a 256-bit vector unit. For memory hier-
archy, each CG is attached to 8 GB DDR3 memory. The 
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Fig. 1  The 2d9pt_box and 3d7pt_star stencil operators
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MPE has 32 KB L1 instruction cache, 32 KB L1 data 
cache and 256 KB L2 cache for both instruction and data. 
Each CPE has its own 16 KB L1 instruction cache and 
64 KB local device memory (LDM) which is explicitly 
managed by the programmer. For main memory access, 
two approaches are provided, including global load/store 
(gld/gst) instructions and direct memory access (DMA). 
And the bandwidth of DMA is much greater than gld/gst. 
Besides, Sunway processor supports low-latency on-chip 
register data communication mechanism between CPEs in 
the same row/column.

3  Related work

3.1  Stencil optimization on CPUs and GPUs

There are quite a few works trying to improve the perfor-
mance of stencil computation on CPUs and GPUs. Spatial 
tiling is a common tiling method to exploit the parallelism 
and locality of stencil computation in spatial dimensions 
(Micikevicius 2009; Mostafazadeh et al. 2018). However, 
spatial tiling only achieves data reuse within a single time 
step. Therefore, temporal tiling was further introduced to 
exploit the temporal locality (Habich et al. 2009; Wellein 
et al. 2009). 3.5D blocking (Nguyen et al. 2010) was pre-
sented to exploit both spatial and temporal data locality of 
stencil computation. Other tiling methods with different 
tiling shapes were also proposed (Bertolacci et al. 2015; 
Frigo and Strumpen 2005; Guo et al. 2009; Rivera and 
Tseng 2000). There are also efficient vectorization schemes 
(Yount et al. 2016; Yuan et al. 2021; Li et al. 2022) and 
advanced algorithmic techniques such as folding (Li et al. 
2021), tessellating (Yuan et al. 2017) and fast fourier trans-
forms (Ahmad et al. 2021) designed to further accelerate 
stencil computation on CPUs. In addition, stencil domain-
specific languages (DSLs), such as STENCILGEN (Rawat 
et al. 2018), AN5D (Matsumura et al. 2020), and Artemis 
(Rawat et al. 2019) focus on automatic code generation for 
stencil computation, which can greatly reduce the burden 
of implementing high-performance stencils on CPUs and 
GPUs. Moreover, performance auto-tuning frameworks 
(Garvey and Abdelrahman 2015; Sun et al. 2021) have been 
proposed to better adapt the stencil computation patterns to 
the processor architectures.

3.2  Stencil optimization on Sunway processor

Although a large number of stencil optimizations have been 
proposed on CPUs and GPUs (Bertolacci et al. 2015; Guo 
et al. 2009; Habich et al. 2009; Matsumura et al. 2020; 
Micikevicius 2009; Mostafazadeh et al. 2018; Nguyen et al. 
2010; Rawat et al. 2018, 2019; Rivera and Tseng 2000; 

Wellein et al. 2009), there are few works optimizing stencil 
computation on Sunway processors. Meanwhile, the opti-
mizations of numerical operators such as GEMM (Jiang 
et al. 2017), SpGEMM (Chen et al. 2019), SpMV (Liu et al. 
2018), SpTV (Chen et al. 2020) have been well studied on 
Sunway. Moreover, the existing works (Ao et al. 2017; Cai 
et al. 2018; Fu et al. 2017; Yang et al. 2016) on Sunway 
mainly focus on accelerating the large-scale applications that 
contain particular stencil computation, other than optimizing 
stencil computation with various patterns. For example, the 
optimizations for earthquake simulation (Fu et al. 2017) and 
atmospheric modeling (Ao et al. 2017) presented custom-
ized parallelization schemes to accelerate particular stencil 
patterns such as 3d13pt_star. MSC (Li et al. 2021) is a new 
DSL designed to generate optimized stencil codes on Sun-
way. However, MSC only applies spatial tiling optimization 
tailored for Sunway architecture. In addition, there are other 
works that adopted the temporal tiling method time skew-
ing (Tang et al. 2020) and proposed performance models 
to guide stencil optimization on Sunway (Liu et al. 2020). 
In general, the above works only provide a partial glimpse 
and fail to provide an in-depth optimization study of stencil 
computation with various patterns on Sunway processor. 
Particularly, except (Tang et al. 2020), all above works fail 
to exploit temporal tiling, and thus the data locality of sten-
cil computation in the temporal dimension. Furthermore, 
without carefully addressing the unaligned and overlapped 
SIMD loads, all the above works fail to achieve the desired 
performance benefit of vectorization for optimizing stencil 
computation on Sunway.

4  Stencil optimizations on Sunway

4.1  Spatial tiling

There is no data dependency within a single timestep in sten-
cil computation, which means that stencil computation has 
parallelism in the spatial dimension. Spatial tiling is a tiling 
method of stencil computation based on the spatial dimen-
sion, and it splits the computational grid into multiple tiles. 
Each CG of a Suwnay processor contains 1 MPE and 64 
CPEs, thus we need to parallelize the stencil computation 
to 64 CPEs in order to utilize the LDM and computation 
resources of CPEs. Particularly, we use spatial tiling to split 
the computational grid into 64 ∗ k tiles ( k = 1, 2, 3… ) as 
shown in Fig. 3. Each tile is loaded into the LDM of the 
corresponding CPE through DMA in order to utilize the 
memory bandwidth. After that, each CPE completes the 
stencil computation tasks with data in LDM and writes back 
the results to the main memory through DMA. Since stencil 
computation requires reading neighboring elements within 
radius R, each tile should contain both the computation 
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region and the extra halo region. We assume the size of each 
tile is: (dimx, dimy, dimz) , and the size of each grid element 
is denoted as � . Because we need to load the whole tile into 
the LDM of CPE, the size of a tile cannot exceed the size of 
LDM, which requires: 𝜀(dimxdimydimz) < 64KB . Since the 
computation region of each tile is non-overlapped, there is 
overlapping between the halo region of tiles that belong to 
adjacent CPEs, which means that the elements in the halo 
region are accessed several times by adjacent CPEs. We 
use the ratio of redundant bandwidth to represent the cost: 
((1 − 2R∕dimx)(1 − 2R∕dimy)(1 − 2R∕dimz))

−1 , where R is 
the radius of stencil operator (Nguyen et al. 2010). When 
dimx = dimy = dimz , the ratio of redundant bandwidth gets 
its minimum. However, since we use DMA as the data trans-
fer approach, according to the data transfer characteristic of 
DMA, the bandwidth of DMA increases when the data trans-
fer size namely dimx gets larger, so the tile size for optimal 
performance must be obtained through experiments (Li et al. 
2018). This optimal tile size is a trade-off between the ratio 
of redundant bandwidth and DMA bandwidth, which we 
should pay attention to when using spatial tiling on Sunway.

4.2  Streaming

Stencil computation has a fixed computation pattern. Only 
(1 + 2R) planes need to be read when computing one plane. 
Therefore, an alternative is to use spatial tiling along two 
of the three spatial dimensions and stream along the third 
dimension. In this way, we no longer store the whole tile 

in LDM. Instead, as shown in Fig. 4, only (1 + 2R) sub-
planes along the streaming dimension need to reside in 
LDM. We use Buffer to represent the (1 + 2R) XY sub-planes 
resident in LDM, the size of Buffer is (dimx, dimy, 1 + 2R) , 
which requires 𝜀((1 + 2R)dimxdimy) < 64KB .  Since 
streaming eliminates redundant bandwidth along the 
streaming dimension, the ratio of redundant bandwidth is 
((1 − 2R∕dimx)(1 − 2R∕dimy))

−1 (Nguyen et al. 2010). We 
can find that streaming not only reduces redundant band-
width but also reduces the LDM occupation. Smaller LDM 
occupation means that we can get larger dimx , and therefore 
improve actual DMA bandwidth. Furthermore, by introduc-
ing streaming, we read one XY sub-plane at each Z iteration 
and then perform the corresponding stencil computation, 
rather than read the whole tile once and for all. This change 
makes DMA requests scattered over each Z iteration, which 
exposes more overlapped space between DMA and com-
putation at each iteration. In-depth theoretical proof can be 
found in Xu et al. (2018). This positive impact of scattering 
DMA requests is rarely noticed in the related work of Sun-
way processor. We will illustrate this through the experiment 
in Sect. 5.

4.3  Combining spatial and temporal tiling

Temporal tiling realizes data reuse in the temporal 
dimension of stencil computation by computing con-
secutive dimt timesteps without global memory access 
and therefore can reduce the amount of global memory 
access. The data dependency in the temporal dimen-
sion is resolved by redundant loading. As shown in 
Fig. 5, we apply temporal tiling (T dimension) combined 
with spatial tiling (XY dimension) and apply stream-
ing along Z dimension. Therefore, we can perform con-
secutive dimt timesteps of stencil computation with-
out global memory access, and each timestep needs to 
buffer (1 + 2R) XY sub-planes in LDM, which requires 
𝜀((1 + 2R)dimtdimxdimy) < 64KB . To resolve the data 
dependency in the temporal dimension for temporal til-
ing, we need to redundantly load Rdimt elements along 

CPE
DMA

Tile

3D Grid

...

R
R

Computation 
Region

Halo 
Region

Fig. 3  Spatial tiling on Sunway processor

Fig. 4  Streaming on Sunway 
processor, when R = 1

...

Step 2

Z
Y
x

Streaming

Step 1 Step 3

...
LDM

LDM
LDM

Memory 
  Plane 

Neighbor   
   Plane 

Central   
 Plane 



326 B. Sun et al.

1 3

the X and Y dimension. So the ratio of redundant band-
width is: ((1 − 2Rdimt∕dimx)(1 − 2Rdimt∕dimy))

−1 (Nguyen 
et al. 2010). In addition, temporal tiling also introduces the 
overhead of redundant computation, whose computation 
formula is similar. In summary, by applying combined til-
ing, we exploit the locality of stencil computation in the 
temporal dimension and significantly increase the com-
putation intensity due to the reduction of global memory 
access. However, noticeable overheads are introduced, 
including redundant bandwidth and redundant compu-
tation. Besides, the rapid increase of the LDM occupa-
tion makes dimx smaller, which reduces the bandwidth 
of DMA. These factors limit the direct effectiveness of 
temporal tiling on Sunway processor. However, due to the 
significant increase of computation intensity, temporal til-
ing still plays an essential role in stencil optimizations on 
Sunway processor, which will be proved in Sect. 5.

4.4  Customized optimizations for Sunway 
architecture

4.4.1  Double buffering

To further exploit the architectural features of Sunway pro-
cessor, we note that the DMA operation on Sunway proces-
sor is asynchronous, meaning that there is no need to wait 
for the data transfer to complete. Instead, the computation 
that does not depend on the data being transferred can be 
performed immediately. Therefore, we employ double buff-
ering to designed optimization scheme. Each CPE allocates 
two data buffers for each DMA transfer, one for computa-
tion and the other for transfer, so that the DMA transfer 
and the computation are overlapped, as shown in Fig. 6. In 
our design, the combined tiling streams along the Z dimen-
sion and only initiates the DMA load at first timestep. After 
employing double buffering, we only need to store 1 more 
XY sub-plane in LDM at first timestep for the DMA load, 
which is quite small compared to the total LDM occupation 

which is (2 + 2R) + (dimt − 1)(1 + 2R) , thus it can improve 
the overall performance steadily.

4.4.2  Vectorization

Although the intuitive vectorization method is easy to imple-
ment for stencil computation, it faces the challenge of the 
unaligned and overlapped SIMD load instructions on Sun-
way processor. For example, a stencil operator with radius 
R has to read (1 + 2R) elements in its central row. Assume 
that the datatype of the grid element is double and the cen-
tral element xc is 32 Bytes aligned in LDM. We emit SIMD 
load instructions at xc±i ( i ∈ ℕ,−R ≤ i ≤ R ) respectively to 
get vectors ⃗xc±i ( i ∈ ℕ,−R ≤ i ≤ R ). However, the SIMD 
load instruction requires the data to be 32-Bytes aligned, 
and otherwise each load instruction will be split into more 
load/store instructions. Therefore, the overhead of unaligned 
SIMD load instruction is huge. Moreover, there is much 
overlap between the corresponding data region of SIMD 
load instructions, which further introduces redundancy and 
overhead. Therefore, we propose a stencil vectorization 
method based on the vector shuffle instruction of Sunway 
processor to address the challenges above. The SIMD shuf-
fle instruction is one of the fastest SIMD instructions with a 
latency of one cycle. It can combine two vectors into a new 
one. It chooses two DP numbers in the first vector as the first 
two of the new vector and two DP numbers in the second 
vector as the last two of the new vector. Therefore, we can 
use SIMD load instruction respectively to get aligned vectors 
⃗xc±i ( i = 4k, k ∈ ℕ,−R ≤ i ≤ R ), and obtain the remaining 

unaligned vectors ⃗xc±i ( i ≠ 4k, k ∈ ℕ,−R ≤ i ≤ R ) through 
shuffle instructions. Figure 7 shows the implementation of 
stencil vectorization, and the radius of the stencil operator is 
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2. The vectorization method for other stencil operators with 
different radius can be deduced based on the above proposed 
method and will not be elaborated here.

4.4.3  Register communication

After applying combined tiling, we exploit the data reuse 
in the temporal dimension. Meanwhile, the halo region 
is increased from R to Rdimt and the tile size becomes 
small due to larger LDM occupation, which increases the 
amount of redundant memory access (i.e., redundant band-
width) and decreases the bandwidth of DMA (i.e., unsatu-
rated bandwidth). To resolve this issue, we integrate the 
collaborative memory accessing scheme (Ao et al. 2017) 
into our combined tiling algorithm. The number of CPEs 
in collaborative memory accessing groups should be 1, 
2, 4, 8 due to the Sunway hardware implementation of 
CG and register communication. Based on our empiri-
cal study, the optimal number of CPEs within a group is 
4, which is also adopted in Ao et al. (2017). Therefore, as 
shown in Fig. 8, 4 CPEs are bundled into a collaborative 
memory accessing group, and each CPE requests a chunk 
of continuous 4dimx − 6Rdimt data. The LDM layout of 
each CPE is then rearranged through exchanging data via 
register communication, and finally each CPE obtains its 
required data. With this scheme, redundant bandwidth is 
reduced from ((1 − 2Rdimt∕dimx)(1 − 2Rdimt∕dimy))

−1 to 
((1 − 2Rdimt∕(4dimx − 6Rdimt))(1 − 2Rdimt∕dimy))

−1 a n d 
DMA bandwidth will increase significantly when the origi-
nal dimx is small. However, the overhead of on-chip register 
data communication and LDM layout rearrangement is also 
significant. Based on the above analysis, we can infer that 
this register communication approach is only effective when 
the redundant bandwidth is large and the DMA bandwidth 

is unsaturated, in other words, when the halo region is large 
and the tile size is small. We will further demonstrate it in 
Sect. 5.

5  Evaluation

5.1  Experimental setup

In the experiments, we select six stencil operators as bench-
marks, whose characteristics are listed in Table 1. We use 
Athread to implement the optimized version of benchmarks 
and set the number of CPE to 64. We compare our opti-
mized implementation CTS with the state-of-the-art stencil 
DSL MSC (Li et al. 2021) and the state-of-the-art stencil 
implementation POS (Tang et al. 2020). Compared with 
POS, the stencil implementation for atmospheric modeling 
(Ao et al. 2017) did not apply time skewing but proposed a 
collaborative data accessing scheme based on register com-
munication. However, it is not included in the performance 
comparison since the customized scheme only applies to 3D 
stencils and is only effective in limited cases. We will dem-
onstrate it in the performance analysis experiment. Table 2 

Fig. 8  The collaborative mem-
ory accessing scheme based on 
register communication
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Table 1  The stencil benchmarks 
used in evaluation

Stencil Dimension Point Shape Radius FLOPs/cell Timestep

2d9pt_star 2D 9 Star 2 17 4
2d9pt_box 2D 9 Box 1 17 4
Gaussian 2D 25 Box 2 50 4
3d7pt_star 3D 7 Star 1 13 4
3d27pt_box 3D 27 Box 1 53 4
Helmholtz 3D 13 Star 2 17 4

Table 2  The parameter settings of MSC, POS and CTS 

Stencil Grid size MSC tile size POS tile size CTS tile size

2d9pt_star 20482 (1,256,8) (4,256,6) (4,256,6)
2d9pt_box 20482 (1,256,8) (4,512,4) (4,512,4)
Gaussian 20482 (1,128,16) (2,512,6) (2,512,6)
3d7pt_star 1283 (1,64,8,4) (2,64,8,4) (2,64,8,4)
3d27pt_box 1283 (1,64,8,4) (2,64,8,4) (2,64,8,4)
Helmholtz 1283 (1,64,8,4) (2,32,8,6) (2,32,8,6)
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presents the optimal parameter settings of MSC, POS, and 
CTS across the benchmarks in experiments. For 2D stencils, 
the tile size parameters are ( dimt,dimx,dimy ). For 3D stencils, 
the tile size parameters are ( dimt,dimx , dimy,dimz ). To meas-
ure the performance impact of six optimization methods, we 
conduct several performance analysis experiments and pro-
vide the roofline model analysis. Each experiment has been 
run ten times, with the average result reported. Note that, we 
focus on stencil optimization on a CG of Sunway SW26010 
processor, which is orthogonal to large-scale optimization 
and is applicable in large-scale execution.

5.2  Performance comparison

The performance comparison results are shown in Fig. 9. 
The performance of our optimized implementation CTS 
achieves 3.03× speedup on average compared with the 
implementation generated by MSC and 1.97× speedup on 
average compared with the implementation of POS. This 
is because MSC only applies spatial tiling optimization and 
POS only applies spatial tiling, time skewing, and double 
buffering optimizations. In contrast, our implementation 
realizes data reuse in the spatial and temporal dimension of 
stencil computation through combined tiling and further lev-
erages the computation resource of Sunway through double 
buffering, vectorization, and register communication. The 
significant performance improvement of our implementa-
tion demonstrates the importance of well-designed stencil 
optimizations tailored for Sunway processor.

5.3  Performance analysis

5.3.1  Ablation experiment results

Fig. 10 shows the results of ablation experiment. The base-
line is the implementation generated by MSC. Among the 
5 optimized implementations, the implementation applying 
only spatial tiling leads to 1.02× speedup over the baseline 
(MSC) on average. This is because although spatial tiling can 
parallelize the stencil computation to 64 CPEs, the perfor-
mance is still bounded by the limited memory bandwidth of 
Sunway processor. By introducing streaming, the speedup 
increases to 1.44× on average, which proves that streaming 
can improve the overall performance considerably by reduc-
ing redundant bandwidth and increasing DMA bandwidth. 
The implementation which incrementally uses temporal til-
ing obtains a 1.43× speedup on average. Although temporal 
tiling fails to provide stable performance improvement due 
to its overhead, including redundant bandwidth, redundant 
computation, and DMA bandwidth reduction, however, it 
can increase computation intensity significantly and thus 
create more optimization space for subsequent optimiza-
tions. We will further explain it in the performance analysis 
experiment. By employing double buffering, the speedup 
increases to 1.61× on average. A further 1.84× speedup is 
achieved by enabling the vectorization. It provides a nota-
ble 2.31× performance improvement on stencil benchmarks 
with high computation intensity, including 2D stencils with 
high-degree temporal tiling (e.g., 2d9pt_star, 2d9pt_box, 
Gaussian), as well as high-order 3D stencils with box shape 
(e.g., 3d27pt_box). These stencil benchmarks can be com-
pute-bound without utilizing the computation capability of 
the vector units through vectorization. Register communica-
tion, an optional optimization scheme that only applies to 3D 
stencils and takes effect in limited cases, has performance 
promotion of 5.9% and 8.6% respectively on 3d7pt_star and 
Helmholtz, while fails to work on 3d27pt_box. The main 
reason is that the collaborative memory accessing scheme 
based on register communication only takes effect on mem-
ory-bound stencil benchmarks with high overheads of redun-
dant bandwidth and unsaturated DMA bandwidth. We will 
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further investigate it in the performance analysis experiment. 
And the final implementation using all six optimization 
methods achieves an impressive 3.03× speedup on average. 
It shows that after applying a series of optimization methods 
tailed for Sunway, we alleviate the bottleneck of memory 
bandwidth and fully exploit the architecture features of Sun-
way processor.

5.3.2  The impact of temporal tiling

To further verify the performance impact of temporal tiling, 
we compared the performance of the implementation using 
all the optimizations except temporal tiling with the final 
implementation using all the optimizations including tem-
poral tiling, and the final experimental results are shown in 
Fig. 11. Compared with the version without temporal tiling, 
the version with temporal tiling achieves 1.59× speedup on 
average. For the four stencil benchmarks with low compu-
tation intensity (2d9pt_star, 2d9pt_box, 3d7pt_star, Helm-
holtz), it achieves 1.80× speedup on average. And in con-
trast, for the remaining two stencil benchmarks with high 
computation intensity (Gassuian, 3d27pt_box), it achieves 
1.15× speedup on average. This indicates that the increase 
of computation intensity is the main reason for the optimiza-
tion effect of temporal tiling. Therefore, stencil benchmarks 
with low computation intensity obtain better optimization 
results due to the severe memory-bound nature, while sten-
cil benchmarks with high computation intensity can still 
be compute-bound after enabling temporal tiling, and thus 
temporal tiling becomes less effective on these benchmarks.

5.3.3  The impact of register communication

As we mentioned in Sect. 4, through grouping several CPEs 
to access the main memory collaboratively, the register 
communication optimization can decrease redundant band-
width and increase DMA bandwidth. To demonstrate this, 
we compared the optimized Helmholtz benchmark with the 
one without collaborative memory accessing, disabling tem-
poral tiling to obtain clearer results. The experimental results 
are shown in Fig. 12. We can find that the register commu-
nication optimization can accelerate the benchmark in most 

tile size settings. Besides, the acceleration is more signifi-
cant on settings with smaller tile size in total or in x-axis. 
However, the acceleration becomes minor or even negative 
when the tile size is 32 × 4 or 32 × 8 . This is because when 
the tile size is large, DMA bandwidth is close to saturation 
due to the large DMA granularity, and the ratio of redundant 
bandwidth is relatively small. The performance improve-
ment brought by the increase of DMA bandwidth and the 
decrease of redundant bandwidth is no longer significant. 
Therefore, the collaborative memory accessing scheme is 
only effective when the tile size is small and the halo region 
is large.

With the analysis above, we know that the register com-
munication optimization reduces the amount of memory 
access and increases the memory access bandwidth, there-
fore applicable to memory-bound stencils. Meanwhile, 
although the overheads of register communication on 3d7pt_
star and 3d27pt_box are similar due to the same radius and 
tile size, the optimized 3d27pt_box can be compute-bound 
due to the higher computation intensity. Therefore, the 
overhead of on-chip register data communication and LDM 
layout rearrangement cannot be amortized, and hence the 
register communication optimization has side effects on the 
performance of 3d27pt_box.

5.3.4  The impact of scattering DMA requests

In Sect. 4, we mention that streaming can scatter the DMA 
requests. To study the impact of scattering DMA requests, 
we take the implementation with only spatial tiling as the 
baseline Spatial Tiling. And we provide two implementa-
tions with streaming: (1) Streaming shares the same param-
eters with the baseline and therefore serves to scatter DMA 
requests, leaving other factors unchanged, (2) Streaming-
opt uses the optimal parameters of tile size, which reduces 
redundant bandwidth and increases DMA bandwidth. The 
final experimental results of the performance comparison 
are shown in Fig. 13. The performance improvement of 
Streaming compared with Spatial Tiling only comes from 
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the scattering DMA requests. On the other hand, the per-
formance improvement of Streaming-opt compared with 
Streaming comes from the optimal parameters of tile size. 
It can be seen that Streaming has a performance improve-
ment of 8.3% on average compared with the baseline, which 
proves the positive performance effect of scattering DMA 
requests.

Unlike the baseline which requires initiating all DMA 
requests at once to read the whole tile, Steaming read one XY 
sub-plane at each Z iteration, which makes DMA requests 
scattered over each Z iteration. So after applying streaming, 
DMA and computation can be overlapped at each iteration, 
and thus the total overlapped time increases considerably, 
which improves the overall performance. In particular, the 
DMA request of 2D stencil is larger due to the larger dimx 
of 2D tiles, which makes the improvement of scattering 
DMA requests more significant on 2D stencil benchmarks. 
The positive impact of scattering DMA requests has rarely 
been noticed in related optimization work on Sunway. And 
through the experiment, we emphasize that scattering DMA 
requests could improve the overall performance, especially 
when the transfer size of DMA is large.

5.4  Tile size sensitivity analysis

To better understand the performance sensitivity of tile size, 
we measure the performance under different settings of tile 
size on Helmholtz. Other stencil benchmarks show similar 
results as Helmholtz. The settings of dimt = 4 are omitted as 
LDM is over-subscribed under most settings of dimt = 4 . In 
Fig. 14, (dimx − 2Rdimt, dimy − 2Rdimt) represents the size 
of the inner region when the tile size is (dimy, dimx) , and the 
pure white cell means that LDM is over-subscribed under 
the tile size setting. We can find that a larger tile size often 
leads to better performance due to the better exploitation of 
spatial and temporal locality. Although the redundant band-
width reaches the minimum when dimx = dimy as mentioned 
in Sect. 4, a larger dimx can increase DMA bandwidth, there-
fore dimx plays a much more significant role than dimy in 
the performance of benchmark. When the setting turns to 
dimt = 2 to increase the computation intensity, due to the 
doubled LDM occupation, the reachable maximum tile size 
is much smaller compared to when dimt = 1 , which can be 

observed from the number of pure white cells in the figure. 
Therefore, the bandwidth of DMA becomes smaller when 
dimt = 2.

With the analysis above, we can conclude that as long as 
the LDM occupation is smaller than 64 KB, the overall tile 
size should be as large as possible. The optimal value of dimx 
and dimy is a trade-off between redundant bandwidth and 
DMA bandwidth, while dimx is much more significant. And 
the optimal value of dimt is a trade-off between computation 
intensity and DMA bandwidth.

5.5  Roofline model analysis

To better understand the effects of our proposed optimiza-
tions for Sunway processor, we perform an analysis based 
on the roofline model. Due to the similar nature of stencil 
benchmarks, we only provide the roofline model analysis 
of Helmholtz for simplicity. As shown in Fig. 15, the com-
putation intensity of the serial version on MPE is only 0.23 
Flops/byte. After introducing spatial tiling, we parallelize 
the stencil computation to 64 CPEs, and each tile is stored in 
the LDM of the corresponding CPE, which greatly reduces 
the amount of memory access. As a result, the computation 
intensity increases to 0.67 Flops/Byte. Streaming improves 
the computation intensity through eliminating redundant 
memory access. Besides, Streaming increases the band-
width of DMA due to the larger block size resulted by the 
reduction of LDM occupation. The computation intensity 
is increased by 2× after using temporal tiling, which creates 

Fig. 13  The impact of scattering 
DMA requests
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more optimization space for subsequent optimization. Dou-
ble buffering and Vectorization further improve the perfor-
mance while keeping the computation intensity unchanged. 
The computation instensity is further increased by the reg-
ister communication optimization due to the decrease of 
redundant memory access. The register communication 
optimization also increases DMA bandwidth through the 
collaborative memory accessing.

The roofline model of a Sunway CG reveals that 33.84 
Flops of calculation should be performed when accessing 
one-byte data in memory to fully utilize its performance. 
Compared with the computation intensity that we achieve, 
increasing the computation intensity is still the key to 
improving the performance of memory-bound stencil bench-
marks, which is the main direction for our future work.

6  Conclusion

In this paper, we proposed a combined (spatial, streaming, 
and temporal) tiling method tailored for Sunway processor. 
Through effectively exploiting the massive parallelism and 
data locality of stencil computation, the proposed method 
mitigates the performance gap between the computation 
capability and the memory bandwidth of Sunway proces-
sor. Further performance improvements have been achieved 
by implementing double buffering, vectorization, and regis-
ter communication. The experimental results on six stencil 
benchmarks demonstrate the effectiveness of our method, 
which achieves 1.97× speedup on average compared to the 
state-of-the-art stencil implementation on Sunway proces-
sor. Various performance analysis experiments are further 
presented, which can serve as a basis for the comprehensive 
understanding of stencil optimizations on Sunway processor.
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